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Summary 

Huge reductions of carbon dioxide (CO2) and nitrous oxide (N2O) emissions can be attained by 
rewetting drained peatlands. A post-2012 framework aiming at peatland rewetting must, 
however, also address associated methane (CH4) emissions.  
The scientific data base for methane (CH4) emissions from peatland is much larger than that for 
CO2 or N2O. The data show that, once anaerobic conditions are given, the availability of fresh 
plant material is the major factor in methane production. Old (recalcitrant) peat plays only a 
subordinate role. 
The annual mean water level is a surprisingly good indicator for methane emissions, but at high 
water levels the cover of aerenchymous shunts (gas conductive plant tissue) becomes a better 
proxy. Ideally, both water level and cover of aerenchymous shunts should be assessed to arrive at 
robust estimates for methane emissions. 
The available data provide sufficient guidance for arriving at consistent Tier 1 methodologies as 
presented in this report. For higher Tier approaches, vegetation provides a promising basis for 
development of more detailed emission factors. Vegetation is a strong indicator for mean water 
levels and can provide – with extra attention for aerenchymous shunts – a robust proxy for 
accurate and spatially explicit estimates of methane emissions over large areas.  



 3

 
 
 
Introduction 

Drainage of peat soils results in carbon dioxide (CO2) and nitrous oxide (N2O) emissions of 
globally 2-3 Gt CO2-eq per year (Joosten & Couwenberg 2009), a volume that should urgently 
be addressed in a post-2012 climate framework. Many of these emissions can be avoided by 
peatland rewetting and restoration (Trumper et al. 2009). 
Rewetting of peatlands suppresses aerobic CO2 and N2O emissions but also leads to increased 
methane (CH4) emissions. Some parties to the UNFCCC are hesitant to include peatland 
rewetting as an activity in a UNFCCC and Kyoto post-2012 framework because conclusive 
IPCC guidance is lacking and the availability of data on CH4 emissions from peatlands assumed 
to be limited. 
Reporting of methane emissions under the UNFCCC is not new. The IPCC (2006) guidelines on 
reporting emissions from croplands (Vol. 4, Ch. 5) provides a detailed Tier 1 approach for 
assessing methane emissions from rice cultivation. Methane emission factors are provided in 
Vol. 4, Ch. 2 for biomass burning based on a review by Andrea & Merlet (2001). Vol. 4, Ch. 10 
gives detailed guidance on methane emissions from livestock and manure management. Also 
methane emissions from the waste sector are covered by the IPCC (2006) guidelines (Vol. 5). So 
there is no general reluctance to address methane.  
The lack of IPCC guidance for CH4 emissions from peatlands is easily explained: until now the 
development of peatland CH4 emission factors has not been opportune. Pristine peatlands do 
produce methane but these emissions are not anthropogenic and thus irrelevant under the 
UNFCCC. On the other hand, land use on peat soils (for forest, cropland, grassland and peat 
extraction) has always involved peatland drainage resulting in negligible methane emissions (but 
substantial CO2 and N2O emissions). Rewettingof drained peatlands as climate mitigation 
measure presents a new challenge, however: addressing methane emissions. 
Fortunately this task is not insuperable: the scientific data base for methane emissions from 
peatland is much larger than those for CO2 or N2O (for which IPCC default values are available, 
see Couwenberg 2009) and recently several high quality reviews on the subject have been 
published (Couwenberg et al. 2009, Lay 2009, Saarnio et al. 2009). 
This report looks at methane emissions from wet peatlands, discusses the mechanisms behind 
these emissions, and presents tentative emission factors. 
 
 
 
 
1. Rewetting of drained peatlands 

In its fourth assessment report, IPCC (2007) estimated emissions from the land use sector 
(AFOLU, Agriculture, Forestry and Other Land Use) to amount to >30% of total anthropogenic 
greenhouse gas emissions. More than 25% of those were estimated to originate from peatland 
fires and degradation of drained peat soils. Peatland rewetting reduces fire risk as well as 
emissions from ongoing degradation of drained peat soils. Undrained peatlands are a natural 
source of methane (Aselmann & Crutzen 1989, Gorham 1991), however, and rewetting will 
reinstate methane emissions that then are of anthropogenic origin and thus must be reported and 
accounted. 
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2. Methane dynamics in peatlands 

In peatlands decomposition of organic matter is incomplete and peat accumulates. Incomplete 
cycling and conservation of peat is caused by waterlogging with its associated low temperatures, 
anaerobic conditions and small microbial populations. Under anaerobic conditions microbial 
decomposition does continue, but such anaerobic degradation of organic material is slow. It is 
carried out stepwise by a complex foodweb of specialised micro-organisms, each producing 
specific intermediate substrates (Whalen 2005, Lai 2009). The final step in anaerobic 
decomposition is then performed by methanogenic Archaea, methane producing micro-
organisms.  
The actual amount of methane emitted to the atmosphere depends on the balance between 
methane production and consumption and the mode of methane transport. 
 
methane production 
Literature reviews (Segers 1998, Whalen 2005, Lai 2009) reveal that 
- most methane in peat columns is derived from recently fixed (young) carbon, 
- methane production decreases when labile substrates are depleted, for example with depth 

below the water table, 
- methane production can be stimulated substantially with addition of intermediate substrates. 
 

These observations lead to the conclusion that, once anaerobic conditions are given, the quality 
and supply of the substrate is the major factor in methane production. Substantial amounts of 
methane are only produced when labile carbon substrates are amply available and old 
(recalcitrant) peat plays only a subordinate role as a substrate for methane production (Chanton 
et al. 1995, Hornibrook et al. 1997, Charman et al. 1999, Clymo & Bryant 2008). 
Large variation has been found in the temperature sensitivity of methane production (Segers 
1998, Whalen 2005). Likely this is due to varying temperature response within the anaerobic 
foodweb (Whalen 2005). At temperatures below -5° C methane production is consistently low. 
While most methanogenic Archaea grow only under a narrow pH range between 6 and 8, some 
are known to occur under more acid conditions as well (Garcia et al. 2000, Whalen 2005, Lai 
2009). Quantitative assessments of the effect of pH on methanogenesis arrive at inconsistent 
results (Whalen 2005). 
 
methane consumption 
Only part of the methane produced is emitted to the atmosphere. Considerable amounts are 
consumed by methanotrophic bacteria (Hanson & Hanson 1996; Segers 1998). The re-oxidation 
of methane is mainly confined to the zone close to the water table, where neither the supply of 
oxygen nor of methane is limited. Similarly, methane consumption occurs in the oxygenated 
zone surrounding plant roots (Fig. 1). The potential for methane oxidation by methanotrophics is 
typically an order of magnitude larger than the potential for methane production by methanogens 
(Segers 1998). As a result, methanotrophic bacteria can limit the amount of methane that is 
released to the atmosphere substantially. 
Data and insight on the influence of temperature and pH on methanotrophs are still incomplete 
and dependencies uncertain (Whalen 2005). 
 
methane transport 
Methane gas is emitted from the peat to the atmosphere via three main pathways: diffusion, 
ebullition and plant mediated transport (Fig 1).  
Diffusion of methane is slow and overall, diffusive efflux from peatlands is small compared to 
the other two pathways (Kiene 1991, Lai 2009). Methane diffusion does play an important role 
in providing the methanotrophic community in the aerobic near-surface zone with methane from 
the anaerobic zone below (Whalen 2005). 
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Fig. 1. Production, re-oxidation and emission of CH4 from a vegetated peatland site (after Kiene 1991, 
see also Whalen 2005, Lai 2009, Li et al. 2009). 
 
Ebullition refers to methane released to the atmosphere in form of bubbles. Methane bubbles 
commonly occur in water saturated peat layers, where they remain trapped and grow in size. 
When a certain threshold pressure is reached, a sudden release of the trapped methane occurs 
(Kellner et al. 2004). Often this release is associated with changes in water level (Strack et al. 
2005), barometric pressure (Kellner et al. 2004, Tokida et al. 2007b, Comas et al. 2008) and 
temperature (Beckmann et al. 2004) as well as mechanical disturbance (Fechner-Levy & 
Hemond 1996). Ebullition events are also observed during spring thaw when methane trapped 
under ice is released to the atmosphere (Moore & Knowles 1990, Hargreaves et al. 2001, Tokida 
et al. 2007a). The rapid transfer of methane bubbles through the aerobic near surface layer means 
there will be little or no consumption by methanotrophs. 
 

Diffuse ebullition can be measured using the eddy covariance technique or even closed chambers 
of sufficient size. Their localised extent and episodic nature make large ebullition events hard to 
detect by closed chamber measurements (Glaser et al. 2004, Comas et al. 2007, Denmead 2008), 
however, and also the eddy covariance technique may not be suitable for measuring these 
emissions (Tokida et al. 2007b). Quantification is therefore difficult. Glaser et al. (2004) use 
surface deformations to calculate a total flux of 136 g CH4 m

-2 from three large degassing events 
during a summer drought that exceeds remaining annual fluxes by an order of magnitude. The 
role of these large ebullition events in rewetted peat sites needs further research and 
quantification. 
 

Many wetland plants possess aerenchymous tissue (Fig. 2) that allows for transport of oxygen 
into the root zone as an adaptation to rooting in waterlogged soils. Whereas this oxygen allows 
for oxidation of methane in the root zone (Chanton et al. 1992), at the same time methane is 
transported through the aerenchyma out into the atmosphere, bypassing the aerobic zone (Fig. 1; 
see Whalen 2005 for a review). Plant species displaying this alternative methane emission 
pathway, or shunt, are referred to as ‘chimney’ or ‘shunt species’. This ‘shunt flow’ occurs both 
as diffusive flux as well as through much more effective pressure driven internal gas flow from 
younger leafs through the aerenchyma down to the rhizomes and then back out to the atmosphere 
through the older leaves (Brix et al. 1992).  
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Fig. 2. Stem cross-sections of aquatic plants showing coarse aerenchymous tissue that 
allows for methane transport from the anaerobic root zone directly into the atmosphere (from 
Sebacher et al. 1985) 

 
The contribution of shunt species to overall methane emissions can be assessed using various 
experimental set-ups and has been estimated at 25-97% (see Whalen 2005 for a review). Plants 
acting as shunts in methane emission include for example Nymphaea, Nuphar, Calla, Peltandra, 
Sagittaria, Cladium, Glyceria, Scirpus, Eleocharis, Eriophorum, Carex, Scheuchzeria, 
Phragmites and Typha (Sebacher et al. 1985, Chanton et al. 1992, Schimel 1995, Shannon et al. 
1996, Frenzel & Rudolph 1998, Verville et al. 1998, Yavitt & Knapp 1998, Grünfeld & Brix 
1999, Frenzel & Karofeld 2000, Greenup et al. 2000, Arkebauer et al. 2001). In addition, 
methane emission through pneumatophores and prop roots has been observed (Purvaja et al. 
2004, Kreuzwieser et al. 2003, Pulliam 1992) as well as through aerenchyma of Alder trees, 
albeit only as slower diffusive flux (Rusch & Rennenberg 1998). The relative effectiveness of 
different plant species in transporting methane through their aerenchyma needs further study.  
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3. Annual methane emissions 

Whereas instantaneous methane emissions frequently show high variability in time and space 
(Whalen 2005), these fluctuations seem to be levelled out over larger areas and time spans. 
Measuring methane emissions using closed chambers is much more straightforward and much 
less cumbersome than measuring carbon dioxide emissions – only part of the available data was 
processed to produce Fig. 4. Yet, reverting to actual measurements to assess fluxes over large 
areas is impractical and proxies are needed (Joosten & Couwenberg 2009). 
In order to estimate methane emissions on a large scale, easily assessable environmental 
parameters are required that possibly explain much of the variation between sites. While pH, 
C/N ratio, temperature and atmospheric pressure certainly affect production, consumption and 
transport of methane, dependencies and dynamics are complex and simple rules cannot be 
derived for situations in the field. On the other hand, water level and the absence/presence of 
shunt species are easily established also for larger areas (Joosten & Couwenberg 2009) and 
provide robust indicators for methane emissions (Fig. 3). 
Methanogenic and methanotrophic micro-organisms in the peat soil are well adapted to adverse 
conditions and remain at the same depth below surface also when water levels fluctuate 
(Kettunen et al. 1999). At higher water levels the thickness of the methane production zone 
increases while the thickness of the methane oxidation zone decreases, and vice versa (Whalen 
2005, Lai 2009). The overall result of this water level dependency and stress resistance of the 
microbial community is that the annual mean water level is a surprisingly good proxy for 
methane emissions (Fig. 3, 4). 
Significant methane emissions occur only at mean annual water levels above -20 cm, a rule that 
applies to boreal as well as temperate peatlands and to bogs and fens alike (Fig 4). Water levels 
above the peat surface often result in lower methane emissions, because of enhanced methane 
consumption in the oxygenated water column (Fig 4, Bubier 1995) and lower cover of shunt 
species.  
 
 

 
 

Fig. 3. Annual methane emissions from the Kendlmühlfilze (Germany) – a disturbed bog site under 
restoration – in relation to mean annual water level and density of aerenchymous leaves that act as 
shunts (or short cuts) for methane emission from the anaerobic zone directly to the atmosphere (after 
Drösler 2008). 
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The actual amount of methane that can be emitted to the atmosphere depends on the balance 
between methane production and consumption. As explained, this balance is determined by the 
water level. At high water levels, the ability to by-pass the high methane oxidation potential in 
the aerobic near surface layer seems more important, however. The cover of aerenchymous 
shunts is then a better proxy for emissions than the mean annual water level (Fig. 3). Ideally, 
both water level and cover of aerenchymous shunts should be assessed to arrive at robust 
estimates for methane emissions (Drösler 2008). 
 
Mapping peatland waterlevels over large areas by direct measurements (and extrapolations) is 
expensive and time-consuming (and likely inaccurate). Instead, vegetation cover can be used as a 
good proxy for waterlevels that can be mapped using remote sensing (Joosten & Couwenberg 
2009). Vegetation mapping can focus on the presence of aerenchymous shunts as well, thereby 
providing a robust basis for accurately estimating methane emissions over large areas. 
 
 

 
Fig. 4. Annual methane emissions from boreal (left) and temperate (right) raised bogs (●) and fens (○) in 
relation to water level and absence (top) or presence (bottom) of shunt species.  
Data from Alm et al. 1997; Augustin & Merbach 1998; Augustin 2003; Augustin & Chojnicki 2008; Augustin et al. 1996a; Augustin et al. 
1996b; Bortoluzzi et al. 2006; Bubier et al. 1993; Drösler 2005; Flessa et al. 1998; Gauci & Dise 2002; Hendriks et al 2007; Jacobs et al. 
2003; Jungkunst & Fiedler 2007; Laine et al. 1996; Maljanen et al. 2004; Müller et al. 1997; Nykänen et al. 1995; Scottish Executive 
2007; Shannon & White 1994; Sommer et al 2003; Tauchnitz et al 2008; Tuittila et al 2000; Van den Bos 2003; Van den Pol-Van 
Dasselaar et al 1997; Van den Pol-Van Dasselaar et al 1999; Van Huissteden et al 2006; Von Arnold 2004; Von Arnold et al. 2005a; Von 
Arnold et al. 2005b; Von Arnold et al. 2005c; Waddington & Roulet 2000; Whiting & Chanton 2001; Wickland et al. 2001; Wild et al. 2001. 
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For (sub)tropical peatlands data on annual methane emissions are still poor, but comparison of 
flux measurements from south-east Asia with those from temperate and boreal Europe reveals 
that fluxes are comparatively low (Fig. 5), which is likely due to the recalcitrance of tropical 
peats (Couwenberg et al. 2009). Emissions from rice paddies on tropical peat are high, but fall 
within the IPCC (2006) default range (Couwenberg 2009).  
 

 
Fig. 5. Top: hourly methane fluxes from tropical peat soil in relation to 
water level. Negative values denote net uptake from the atmosphere by 
the soil. Bottom: same for (∆) boreal and (□) temperate sites Note the 
fivefold difference in scale. (From Couwenberg et al. 2009.) 
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4. Emission factors 

With respect to aerenchymous shunts, current published data only allows for distinguishing 
between their presence and absence (Fig 4), which nevertheless results in distinct emission 
classes (Fig. 4). In a Tier 1 approach, distinction can, for example, be restricted to ‘dry’ and 
‘wet’ peatlands, where ‘wet’ means a mean annual water level of -20 cm or higher (Tab. 1).  
 

Tab. 1. Emission factors for methane from peatlands following a 
first, simplified Tier 1 approach. ‘Dry’ means a mean annual 
water level below -20 cm, ‘Wet’ one above – 20 cm. 
 

 kg CH4 ha-1 a-1 
mean (range) 

 Dry Wet 

Boreal 8.6 (-1.1 – 51) 56 (-1.7 – 525) 

Temperate  0.2 (-4.0 – 9.0) 122 (-0.2 – 763) 

 
In a more sophisticated approach, a differentiation can be made between generally nutrient poor, 
acidic raised bog peat and often more nutrient and base rich fen peat (cf. Joosten & Clarke 2002). 
The lower nutrient content and higher acidity of the bog peat would suggest lower methane 
production and emission (Lai 2009). This is indeed so for boreal peatlands and becomes most 
obvious when comparing bogs and fen with aerenchymous shunts (Fig. 4, Tab. 2). In temperate 
peatlands no differentiation between bogs and fens can be made on the basis of the available data 
(Fig. 4). Taking the presence/absence of shunt-species into account, Tab. 2 presents emission 
factors for methane on a more detailed level. 
 
Tab. 2. Emission factors of methane from peatlands addressing climate, peatland type and vegetation. 
‘Dry’ means a mean annual water level below -20 cm, ‘Wet’ one above – 20 cm. 
 

  kg CH4 ha-1 a-1 
mean (range) 

  Wet 

  

Dry 

Without shunts With shunts  

Bogs 12 (3.1 – 59) 
Boreal 

Fens 
8.6 (-1.1 – 51) 24 (-1.7 – 164) 

123 (6.6 – 525) 

Temperate   0.2 (-4.0 – 9.0) 50 (-0.2 – 250) 170 (0 – 763) 

 
Availability of comparable data for tropical peatlands is still limited. Current knowledge 
suggests emissions will be small after rewetting (Fig. 5, Couwenberg et al. 2009). 
 
Rewetting of previously drained peat soils may lead to excessive initial methane emissions when 
vegetation is flooded and dies off to become substrate for methanogens (Augustin & Chojnicki 
2008). On the longer run there will be a clear climate benefit from rewetting drained peatlands, 
however, even in case of such mishaps (Augustin & Chojnicki 2009), but certainly when cutover 
peatlands are concerned (Tuittila 2000; Wilson et al. 2008). 
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5. Conclusions 

Huge reductions of CO2 and N2O emissions can be reached by rewetting drained peatlands. A 
post-2012 framework aiming at peatland rewetting must, however, also address the associated 
methane (CH4) emissions. The IPCC does not provide conclusive guidance in this respect 
because CH4 emissions were until now irrelevant (pristine peatlands) or non-existent (drained 
peatlands). 
The scientific data base for methane emissions from peatland is much larger than that for CO2 or 
N2O. The data show that, once anaerobic conditions are given, the quality and supply of the 
organic material is the major factor in methane production. Substantial amounts of methane are 
only produced when fresh plant material is amply available. Old (recalcitrant) peat plays only a 
subordinate role. 
Methane is emitted via three main pathways: diffusion, ebullition and plant mediated transport. 
Both the role of large ebullition events and the effectiveness of different plant species in 
transporting methane through their aerenchyma need further study.  
Whereas methane emissions show high variability in time and space, these differences seem to 
be levelled out over larger areas and time spans. The annual mean water level is a surprisingly 
good proxy for methane emissions. At high water levels, the ability to by-pass the high methane 
oxidation potential in the aerobic near surface layer becomes more important and the cover of 
aerenchymous shunts becomes a better proxy for emissions than the mean annual water level. 
Ideally, both water level and cover of aerenchymous shunts should be assessed to arrive at robust 
estimates for methane emissions. 
The available data and insight provide sufficient guidance for arriving at a consistent Tier 1 
methodology. In a tentative Tier 1 approach, distinction is made only between ‘dry’ and ‘wet’ 
peatlands, where ‘wet’ means a mean annual water level of -20 cm or higher. In a more complex 
approach, additional differentiation can be made between sites with and without shunt species 
and – at least in the boreal zone – between nutrient poor, acidic (bogs) and more nutrient and 
base rich sites (fens).  
For higher Tier approaches development of more detailed emission factors on the basis of 
vegetation looks promising. Vegetation is a strong indicator for mean water levels and can 
provide - with extra attention for aerenchymous shunts - a robust proxy for accurately and 
spatially explicitly estimating methane emissions over large areas (Joosten & Couwenberg 
2009). 
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